
Learning Multi-Agent Collaborative Manipulation for Long-Horizon
Quadrupedal Pushing

Yuming Feng1,∗, Chuye Hong1,∗, Yaru Niu1,∗, Shiqi Liu1, Yuxiang Yang2,
Wenhao Yu2, Tingnan Zhang2, Jie Tan2, and Ding Zhao1

1Carnegie Mellon University, 2Google DeepMind, ∗Equal contributions
https://collaborative-mapush.github.io

Agent 1 Trajectory
Agent 2 Trajectory
Object Goal
Obstacle

Agent 1 Trajectory
Agent 2 Trajectory
Agent 3 Trajectory

Object Goal
Object Subgoal
Obstacle

Fig. 1: Our proposed method enables long-horizon collaborative pushing by multiple quadrupedal robots in environments
with obstacles. The high-level controller within our hierarchical MARL framework generates adaptive subgoals to guide
the lower-level policies during the collaborative manipulation of large objects of varying shapes. The agents’ adaptive
coordination ensures smooth obstacle avoidance and successful task completion, showcasing the robustness and flexibility
of our hierarchical framework.

Abstract— Recently, quadrupedal locomotion has achieved
significant success, but their manipulation capabilities, particu-
larly in handling large objects, remain limited, restricting their
usefulness in demanding real-world applications such as search
and rescue, construction, industrial automation, and room or-
ganization. This paper tackles the task of obstacle-aware, long-
horizon pushing by multiple quadrupedal robots. We propose
a hierarchical multi-agent reinforcement learning framework
with three levels of control. The high-level controller integrates
an RRT planner and a centralized adaptive policy to generate
subgoals, while the mid-level controller uses a decentralized
goal-conditioned policy to guide the robots toward these sub-
goals. A pre-trained low-level locomotion policy executes the
movement commands. We evaluate our method against several
baselines in simulation, demonstrating significant improvements
over baseline approaches, with 36.0% higher success rates and
24.5% reduction in completion time than the best baseline. Our
framework successfully enables long-horizon, obstacle-aware
manipulation tasks like Push-Cube and Push-T on Go1 robots
in the real world.

I. INTRODUCTION

Recent advances in quadrupedal robots have significantly
improved their ability to traverse challenging terrains [1]–[6].
While many studies have focused on enhancing their mobility
and stability of locomotion, the manipulation capabilities
of these robots remain relatively limited. Efforts have been
made to improve the quadrupedal capabilities in prehensile

manipulation through attaching grippers or robotic arms on
the robot [7]–[12], and non-prehensile manipulation by using
legs [13]–[16] or the head [17], [18] as the end-effectors.
Although these advancements enable quadrupeds to handle
some routine tasks, their limited ability to manipulate large
and heavy objects still restricts their usefulness in demand-
ing fields like search and rescue, construction, industrial
automation, and room organization, where both dexterity
and strength are essential. To address these challenges,
researchers have explored adding support structures to the
robots [19], [20], coordinating whole-body movements [21],
and using multiple robots [22], [23] to strengthen contact
forces and expand operational dimensions. However, achiev-
ing long-horizon manipulation of large objects in cluttered
environments remains a largely unexplored and challenging
task for quadrupeds.

In this work, we focus on addressing the challenge of
obstacle-aware, long-horizon pushing by coordinating the
whole-body motions of multiple quadrupedal robots. We
build our work upon recent works of quadrupedal pushing
that demonstrate impressive results. As shown in Table I,
while many approaches utilize multiple robots to enhance
manipulation abilities, few focus on long-horizon pushing
and obstacle avoidance, both of which are critical for real-

https://collaborative-mapush.github.io/


world tasks. Additionally, the limited use of whole-body
motions (e.g., relying solely on heads to push) [18], [22],
[23] restricts the contact patterns between robots and ob-
jects, making it difficult for the robots to perform diverse
movements and avoid collisions with obstacles.

TABLE I: Comparisons between our proposed method and
previous methods of quadrupedal pushing.

Method Collaborative Long-
Horizon

Whole-
Body

Obstacle-
Avoidance

Sombolestan et al. [18] ✗ ✗ ✗ ✗
Jeon et al. [21] ✗ ✗ ✓ ✗

Sombolestan et al. [22] ✓ ✗ ✗ ✗
Nachum et al. [23] ✓ ✓ ✗ ✓

An et al. [24] ✓ ✗ ✓ ✗
Xiong et al. [25] ✓ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓

To achieve collaborative, obstacle-aware, long-horizon
quadrupedal pushing through whole-body motions, we
propose a hierarchical multi-agent reinforcement learning
(MARL) framework with three levels of controllers. The
high-level controller integrates an Rapidly-exploring Ran-
dom Tree (RRT) planner [26] and a centralized adaptive
policy, which processes the reference trajectory, environment,
and agent information to generate subgoals for the object.
The mid-level controller learns a shared decentralized goal-
conditioned policy, enabling multiple robots to coordinate
and push the object toward the sequential subgoals proposed
by the high-level controller. The low-level controller is a
pre-trained locomotion policy that executes commands from
the mid-level controller. We validate our approach through a
series of experiments in both simulation and real-world tests
on Go1 robots, a few of which are visualized in Figure 1.
Our results demonstrate that the proposed method achieves
a 36.0% higher success rate and a 24.5% reduction in
completion time compared to the best baseline approach in
simulation. Furthermore, our method can be deployed on real
robots to successfully complete obstacle-aware, long-horizon
Push-Cube and Push-T tasks. The main contributions of this
paper can be summarized as follows.

• We propose a hierarchical MARL framework with three
hierarchies that can handle long-horizon collaborative
quadrupedal pushing in an environments with obstacles.

• We benchmark our proposed method against baselines
on various long-horizon pushing tasks involving obsta-
cles in IsaacGym [27], demonstrating that our method
significantly outperforms the baselines.

• We deploy our trained hierarchical policy on real robots,
successfully completing the collaborative long-horizon
Push-Cube and Push-T tasks with coordinated whole-
body motions.

II. RELATED WORK

A. Loco-Manipulation for Legged Robots

Researchers have proposed various optimization-based
methods for prehensile loco-manipulation [7]–[9], [28].

These approaches often use hierarchical structure to co-
ordinate locomotion and gripper motions [7], decompose
tracking objectives [9], or abstract object information for
planning [8]. Optimization-based methods have also been ap-
plied to single-robot non-prehensile manipulation tasks [17]–
[20], [29], many of which rely on modeling and optimizing
contacts with either the object or the ground. Murooka
et al. demonstrate how humanoid robots can push large,
heavy objects through contact posture planning [29], while
Polverini et al. introduce a multi-contact controller for a
centaur-type humanoid robot to handle similar tasks [19].
Rigo et al. introduce a hierarchical MPC framework for
optimizing contact in quadrupedal loco-manipulation, where
the robot is constrained to using its head for pushing [17].

Recently, learning-based methods have demonstrated its
effectiveness in loco-manipulation for legged robots. Specif-
ically, reinforcement learning (RL) has been used to train
short-horizon quadrupedal pushing skills [15], [30], [31],
and other non-prehensile loco-manipulation skills such as
dribbling a soccer ball [14], manipulating a yoga ball [13]
pressing buttons [16], opening doors [32], and carrying
boxes [33]. Jeon et al. propose a hierarchical reinforcement
learning framework for quadrupedal whole-body manipu-
lation of large objects, capable of inferring manipulation-
relevant privileged information through interaction history
[21]. Moreover, learning-based whole-body controllers are
trained for prehensile manipulation that requires grasping
various objects [11], [34] and consuming visual inputs [10],
[12], [35]. Our work focuses on quadrupedal pushing, co-
ordinating whole-body motions using RL-trained policies
without explicitly modeling contacts.

B. Multi-Agent Collaborative Manipulation

Optimization-based methods have proven effective in
multi-agent collaborative manipulation across various robotic
embodiments, such as mobile robots [36]–[39], robotic arms
[40], quadrotors [41], and six-legged robots [42]. Some
works explore utilizing Model Predictive Control (MPC)
to achieve cooperative locomotion for multiple quadrupedal
robots holonomically constrained to one another [43]–[45] or
collaborative loco-manipulation with objects rigidly attached
to each robotic hand [46]. However, these approaches might
lack generalizability to more typical scenarios due to their
reliance on specific inter-robot connections. The work in [22]
introduces a hierarchical adaptive control method enabling
multiple quadrupeds to cooperatively push an object with
unknown properties along a predetermined path, though the
robots are constrained to use their head to push the objects.

Moreover, MARL are employed in cooperative biman-
ual manipulation for robotic arms [47]–[50] and dexterous
hands [51], [52], and collaborative loco-manipulation for
quadrupeds [23]–[25], [53], snake robots [54] and bipedal
robots [55]. Nachum et al. propose a two-level hierarchical
policy in which the high-level policy generates subgoals for
each robot to navigate toward [23]. Xiong et al. benchmark
MARL with a two-level hierarchical structure in cooperative
and competitive tasks, but the methods struggle in a simple



High-Level Controller
RRT Planner

Adaptive Policy

Trajectory
Subgoal

Mid-Level Controller
Pushing Policy 1 

Pushing Policy 2

Pushing Policy N

…

Low-Level Controller
Locomotion Policy 1

Locomotion Policy 2…

Locomotion Policy N

Command 1

Command 2

Command N

…

High-Level Task Mid-Level Task Low-Level Task
Training Training Training

SubtaskSubtask

…

Fig. 2: Overview of the proposed hierarchical MARL framework for collaborative long-horizon pushing tasks by quadrupedal
robots. The framework comprises three layers: a high-level controller, a mid-level controller, and a low-level controller. The
high-level controller utilizes an RRT planner to generate a trajectory and an adaptive policy to assign subgoals based on
the dynamic states of the environment, object, and robots. The mid-level controller employs decentralized pushing policies
to convert a common subgoal into agent-specific velocity commands, which are then executed by the low-level locomotion
policy on each robot. Each layer is trained independently, leveraging frozen lower-level policies.

box-pushing scenario [25]. An et al. introduce a permutation-
invariant network architecture that enables short-horizon
multi-object pushing for wheeled-legged quadrupeds [24].
However, these approaches primarily focus on generating
effective robot-centric commands for locomotion controllers,
making them limited in longer-horizon manipulation tasks.
Our approach addresses these limitations by enabling mul-
tiple robots to coordinate whole-body motions for long-
horizon pushing tasks in the environments with obstacles.

C. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is often uti-
lized to tackle challenging long-horizon decision making
problems. In HRL methods, the high-level policy usually
learns to set subgoals for the low-level [56]–[59], or learns
to combine and chain behavior primitives [50], [60], [61].
In multi-agent settings, the high-level policy in hierarchical
MARL generates goals or commands in a decentralized
manner [24], [25], [62], or through a centralized controller
[23], [63]–[65]. Meanwhile, many learning-based controllers
for legged robots follow a hierarchical structure, where a
high-level RL policy provides intermediate commands to the
low-level controllers, such as torso velocities [21], [24], foot
landing positions [66], [67], target poses [68], [69], gait
timing [70], [71] or a combined of several [72], [73]. In
our approach, we use a centralized high-level controller to
propose a shared object-centric goal for all robots, while
decentralized mid-level controllers send torso velocity com-
mands to each robot’s low-level policy.

III. METHODOLOGY

A. Hierarchical Reinforcement Learning for Long-Horizon
Multi-Robot Pushing

To enable quadrupedal robots to collaboratively perform
long-horizon pushing tasks in environments with obstacles,

we propose a hierarchical reinforcement learning framework,
as illustrated in Figure 2. This framework consists of three
layers of controllers. At the top level, an RRT planner gen-
erates a geometrically feasible trajectory without accounting
for the robots’ pushing capabilities or the dynamics of multi-
ple robots and the object. The high-level adaptive policy then
uses this trajectory as a reference to assign a subgoal for the
target object, based on the dynamic states of the environment,
object, and robots. Using this common subgoal, each robot’s
mid-level pushing policy provides velocity commands to its
corresponding low-level policy. Due to the computational
demands of the RRT planner, it is executed only once at
the start of each episode. Both the high-level adaptive policy
and the mid-level controller operate at a frequency of 50 Hz,
with the higher frequency at the high level proving beneficial
for more adaptive behavior in our settings. The low-level
locomotion policy also runs at 50 Hz, while the PD controller
is implemented at 200 Hz in simulation and 2000 Hz on the
physical robot. In the following sections, we will introduce
each of these three hierarchies in detail.

B. Low-Level Controller

The low-level controller controls each robot individually
to track the mid-level velocity commands. More specifically,
each low-level controller πl,i

φ : Ol,i → Al,i computes motor
commands al,i to track the mid-level velocity command
am,i = (vix, v

i
y, v

i
yaw). Despite recent progress of learning-

based low-level controllers [73], we find these controllers to
suffer from a large sim-to-real gap, and cannot accurately
track the velocity commands, especially when the robot is
pushing a heavy object. Instead, we use Unitree’s built-in
low-level controller, which tracks the velocity commands
significantly more robustly in the real world. For efficient
policy training in simulation, we train a learned low-level
policy to mimic the behavior of Unitree’s built-in controller.



We create the simulated low-level controller based on
Walk-These-Ways (WTW) [73]. As an RL framework for
low-level motor control, WTW can learn locomotion behav-
iors with configurable body pose, gait timing, and reference
velocity. We measure these parameters on the built-in con-
troller, and reproduce them in WTW to learn similar behav-
iors. During upper-level policy training, we invoke the low-
level WTW policy in parallel on GPU, which significantly
reduced the training time.

C. Mid-Level Controller

The mid-level controller πm,i
ϕ : Om,i → Am,i is a

decentralized policy of agent i, where Om,i represents the
mid-level local observation space of robot i, and Am,i is
the action space of the mid-level policy of agent i. This
decentralized policy takes as input the high-level action ah,
the local observation of robot i, om,i ∈ Om,i, which consists
of the local observations of the target object state siobject, ob-
stacle state siobstacle, and the state of other robots, {sij}Nj=1,j ̸=i,
all computed in the local torso frame of the robot i. For
example, siobject can be expanded as (xiobject, y

i
object, ψ

i
object),

where riobject = (xiobject, y
i
object) is the 2D position of the

object, and ψi
object is its yaw angle, both in the local frame

of robot i. The mid-level policy of agent i will output a
mid-level action am,i ∼ πm,i

ϕ (am,i|om,i, ah) ∈ Am,i in a
decentralized manner to the low-level controller of robot i.

In practice, we train a mid-level policy shared by all
robots, noted as πm

ϕ . Following the scheme of central-
ized training and decentralized execution, it is trained by
MAPPO [74] to optimize the objective function Jm(θ) =

Eτ∼ρπ

[∑T
t=0 γ

trm(st, a
h
t , {a

m,i
t }Ni=1)

]
, where st is a joint

state at time t, τ is the trajectory sampled from a distri-
bution ρπ induced by policy πm

ϕ , initial state ρm0 and the
transition probability pm that are defined by the mid-level
task. Here, rm(·) represents the reward function for the
mid-level controller. During training, we randomly sample
the subgoals of the object as ah and freeze the low-level
policy. Meanwhile, we specialize the domain randomization
for frictions to reduce the Sim2Real gap of pushing.

D. High-Level Controller

The high-level controller is composed of two elements, a
RRT planner P : M × G → T and a centralized adaptive
policy πh

θ : M×T ×Sobject×S1×S2×· · · SN → Ah, where
M represents the map information space, G represents the
goal space of the target object, T represents the trajectory
space of the RRT planner, Sobject denotes the object state
space, Si is the state space of robot i, and Ah is the action
space of the high-level adaptive policy.

The RRT planner takes the desired goal position of the
object gobject ∈ G and the map information pmap ∈ M
encompassing the obstacle position and the initial position
of the object as input and outputs a reference trajectory
τr ∈ T for the adaptive policy πh

θ . The adaptive policy will
use the desired goal gobject, each robot state si ∈ Si, the
map information pmap and the dynamic global object pose
sobject ∈ Sobject, as the input, and output a high-level action

ah ∼ πh
θ (a

h|gobject, pmap, s1, s2, · · · , sN , sobject, τr) ∈ Ah

as the subgoal position of the target object to
the mid-level policy πm

ϕ . The high-level adaptive
policy is a centralized policy and trained via PPO
[75] to optimize the objective function J h(θ) =

Eτ∼ρπ

[∑T
t=0 γ

trh(gobject,t, pmap,t, sobject,t, {si,t}Ni=1, a
h
t , τr)

]
, where τ is the trajectory sampled from a distribution ρπ
induced by policy πh

θ , initial state ρh0 and the transition
probability ph that are defined by the high-level task, Here,
rh(·) represents the reward function for the high-level
controller. During training, we freeze the mid-level and
low-level controller.

E. Reward Design

Occluded 
Area Object Convex Hull

Robot
Object
Subgoal

𝒗𝐭𝐚𝐫𝐠𝐞𝐭𝒗𝟏

𝒗𝟐

𝒓𝐎𝐂𝐁
𝒎,𝟏 = 𝒗𝟏 $ 𝒗𝐭𝐚𝐫𝐠𝐞𝐭 = 𝟎. 𝟗 𝒓𝐎𝐂𝐁

𝒎,𝟐 = 𝒗𝟐 $ 𝒗𝐭𝐚𝐫𝐠𝐞𝐭 = −𝟎. 𝟖

Fig. 3: An example of the OCB reward. The robots are
encouraged to push along object’s convex hull perimeter
that occludes their view of the subgoal, guiding the object’s
motion approximately in that direction. Here, v⃗target is a unit
vector directing from the object towards the subgoal, , while
v⃗i is a unit normal vector at the closest point on the object’s
convex hull to robot i, directed inward.

1) Mid-Level Reward: Our mid-level reward function is
formulated as rm = rmtask + rmpenalty + rmheuristic. The mid-level
task reward rmtask incentivizes actions that move the object
toward and reach the target point, while the penalty term
rmpenalty penalizes agents for close proximities, as well as for
exceptions such as robot fall-overs and timeouts.

The mid-level heuristic reward rmheuristic plays a vital role in
the pushing process, given the expansive action space and the
inherent uncertainty and complexity of interactions during
pushing. It is defined as rmheuristic = rmapproach + rmvel + rmOCB,
where the mid-level approaching reward rmapproach encourages
agents to approach the object, and the velocity reward rmvel
rewards agents when the object’s velocity exceeds a pre-
defined threshold, promoting diverse pushing actions while
preventing oscillation near the object.

Importantly, an occlusion-based (OCB) reward rmOCB, in-
spired by [38], is introduced to guide agents toward more
favorable contact points in the areas where robots’ views
of the subgoals are blocked. Specifically, the OCB reward
of robot i is calculated as rm,i

OCB = v⃗i · v⃗target, where v⃗i is
the unit normal vector at the closet point on the object’s
convex hall to robot i and v⃗target is unit vector directing
from the object towards the subgoal, as depicted in Figure



3. Agents are rewarded or penalized based on rmOCB, which
is crucial in pushing tasks where identifying optimal contact
points is challenging. This reward encourages agents to target
occluded surfaces, enabling more effective pushing behavior.

2) High-Level Reward: The high-level reward function
is composed of two terms: rh = rhtask + rhpenalty. The high-
level task reward rhtask provides a sparse reward for reaching
the final target and two dense rewards: one for minimizing
the distance between the subgoal and the nearest point on
the RRT trajectory, and the other for reducing the distance
between the object and the final target. This guides the robots
to follow the RRT trajectory while allowing minor devia-
tions for handling push complexities. The high-level penalty
rhpenalty includes penalties for close distances to obstacles and
severe punishments for exceptions such as robot fall-overs,
collisions, object tilting, and timeouts.

IV. EXPERIMENTS

A. Simulation Setups

1) Environments and Tasks: We build our simulation
environments in IsaacGym [27]. We consider a cluttered
environment with randomly placed 1.0m × 1.0m obstacles,
where multiple quadrupeds need to push a target object to a
desired goal. Unitree Go1 robots are utilized in simulation
to match the physical robots, each with an approximate
payload capacity of 5 kg. The robots are tested with three
types of objects varying in shape and mass: a 4 kg cube
(1.2m×1.2m), a 3 kg T-shaped block, and a 10 kg cylinder
with a radius of 1.5 m. Each object is larger than the robot
in size and close to or exceeds the robot’s payload capacity.
Different numbers of agents are evaluated across tasks, with
two agents for the cube and T-shaped block, and up-to four
agents for the cylinder. The initial positions and postures of
the agents and target objects are randomly set within a small
range on one side of the room, while the target goals for the
object are generated on the other side. The task is considered
successful if the center of the object is positioned within 1 m
of the target. Failure occurs in the situation described in Sec.
III-E.2 . The tasks are designed for challenging long-horizon
pushing, with initial-to-target distances exceeding 10 m.

2) Baselines: We compare our proposed method with the
following baselines.

Single-Agent (SA) retains the three hierarchical levels of
the policy and the reward function design, but only a single
quadrupedal robot is employed for each task.

High-Level+Low-Level (H+L) utilizes both a high-level
and a low-level policy, where the high-level policy proposes
subgoals for the robots, and the low-level policy aids the
robots in navigating to these subgoals. We maintain rhtask and
rhpenalty mentioned in Sec. III-E.2. This baseline follows a
similar approach to [23], with a multi-agent implementation
using MAPPO [74].

Mid-Level+Low-Level (M+L) retains the mid-level and
low-level policies without using a high-level policy to pro-
vide subgoals, meaning the robots are guided directly by the
distant final target. Similar to the methods proposed in [25]
and [24], we maintain rmtask and rmpenalty mentioned in Sec.

III-E.1. In addition, extra heuristic rewards, rmapproach and rmvel,
are added to promote the long-horizon pushing performance
of the mid-level network.

High-Level+Low-Level with Fine-Tuned Rewards
(H+L FT) uses the same policy architecture as H+L, incor-
porating our fine-tuned reward functions. Specifically, We
retain rhtask and rhpenalty, while introducing heuristic rewards
similar to rmheuristic to this high-level subgoal-proposing policy.
This baseline further improves the method from [23] and
provides an ablation of our approach, excluding the RRT
planner and the mid-level pushing policy.

Mid-Level+Low-Level with Fine-Tuned Rewards (M+L
FT) follows the same policy architecture as M+L with our
fine-tuned reward functions. We maintain a complete set of
rewards, rmtask, rmpenalty, and rmheuristic mentioned in Sec. III-E.1.
This baseline further enhances the methods in [25] and [24],
while also offering an ablation study of our approach without
the high-level controller.

B. Simulation Results and Analysis

1) Comparisons with Baselines: Training was carried out
in 500 environments, accumulating 80 million steps, each 10
million steps taking approximately one hour of simulation
time. The performance of each method is summarized in
Table II. The success rate (S.R.) is evaluated over 50 trials,
averaging results from four random seeds with a frozen
low-level policy. The completion time (C.T.) represents the
average time taken by the robots to complete the pushing task
in 50 trials. If a failure occurs during the task, the completion
time is recorded as the timeout duration.

As shown in Table II, the proposed method achieves an
average success rate exceeding 60% in all tasks involving
three distinct objects. In contrast, the Single-Agent method
exhibits a success rate below 25%, as a single robot has
limited strength and manipulation range for efficient and
adaptive pushing of a large and heavy object. The H+L
method also faces challenges, with a similarly low success
rate. In some situations, the object movements towards the
final goal are disrupted by the other one or two agents,
even if the agents can usually reach their own subgoals.
This highlights the difficulty of aligning agent-wise subgoals
with effective push control, particularly given the complexity
of object interactions, indicating the need for a more fine-
grained coordination. The M+L method outperforms H+L by
enabling more elaborate collaboration, but it exhibits greater
variability across different seeds. Likewise, it still struggles
with the long-horizon nature of the task, as its higher-level
policy has difficulty effectively guiding the object towards
the distant target. After training with our designed reward
functions, both the H+L FT and M+L FT methods exhibit
notable performance improvements, demonstrating the effec-
tiveness of our heuristic rewards, including the OCB reward.
However, the M+L FT method still falls significantly short
compared to our approach. Additionally, while the H+L FT
method achieves a reasonable average performance, it lacks
stability and shows poor adaptability with certain objects,



TABLE II: Success rates and completion time (± standard deviation) of our method and baselines in different settings in
simulation. The completion time is scaled to [0, 1] where 1 means taking up a full episode reaching the timeout.

Task SA H+L M+L H+L FT M+L FT Ours

Cube S.R.↑ 4.5±0.3% 0.23±0.02% 10.5±8.5% 41.0±16.2% 24.3±20.9% 77.5±3.0%
C.T.↓ 0.98±0.02 1.00±0.00 0.95±0.04 0.76±0.12 0.86±0.12 0.66±0.04

T-Shape S.R.↑ 21.2±9.3% 9.0±6.0% 1.8±1.0% 7.3±3.8% 25.8±28.9% 63.5±7.7%
C.T.↓ 0.96±0.04 0.94±0.04 0.99±0.01 0.95±0.02 0.80±0.19 0.68±0.04

Cylinder S.R.↑ 0.0±0.0% 3.0±4.0% 3.0±3.0% 56.0±16.5% 26.9±27.3% 71.2±5.1%
C.T.↓ 1.00±0.00 0.99±0.02 0.80±0.02 0.70±0.14 0.81±0.20 0.48±0.01

such as the T-shape. This indicates the necessity of our
designed hierarchical architecture.

2) Ablation Study:
a) The OCB Reward: To assess the effectiveness of the

OCB reward in training the mid-level controller for short-
horzion pushing, we conduct an ablation study in a free
space environment, where a 6 kg cube (1.5m × 1.5m) is
placed with random orientations. Two agents are randomly
initialized, while the target object position (subgoal for the
mid-level controller) is generated within a circular area 1.5 to
3.0 m from the cube’s initial position randomly. As shown in
Table III, our method significantly outperforms the ablation
experiment in both success rate (S.R.) and completion time
(C.T.). In particular, as the duration of the timeout increases,
the success rate of our method improves more rapidly,
indicating a better adaptability to adjust the direction of
pushing when the object deviates, an issue that often causes
failures with shorter timeouts.

TABLE III: The results of the OCB-reward ablation study.
Two methods are evaluated under two timeout conditions.

Timeout=20s Timeout=40s

S.R.↑ C.T.↓ S.R.↑ C.T.↓

Ours 57.0±6.1% 14.9±0.8 74.0±6.9% 22.5±2.4
Ours w/o OCB 13.0±1.2% 18.3±0.2 19.0±2.6% 34.9±0.3

Agent 1 Trajectory
Agent 2 Trajectory

Object Goal
Obstacles

Agent Subgoal

(a) Ours w/o adaptive policy.

Agent 1 Trajectory
Agent 2 Trajectory

Object Goal
Obstacles

Agent Subgoal

(b) Ours.

Fig. 4: Comparison between our method and the one with
only the RRT planner at the high-level controller.

b) The High-Level Adaptive Policy: To demonstrate
the need for an adaptive high-level controller, we design a
challenging scenario with obstacles placed directly between
the start and target positions of the T-block. Although the
RRT planning algorithm finds a short path, it often leads to

trajectories that come too close to obstacles without consid-
ering the object shape, failing to account for the dynamics
of the pushing process and lacking real-time adjustments
based on the object’s state (Fig. 4a) In contrast, our method
deviates from obstacles in advance, allowing the robots to
bypass them and reach the goal (Fig. 4b), underscoring the
importance of the RL-trained high-level adaptive policy.

1 2 3 4
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

0.00

0.25

0.50

0.75

1.00

Co
m

pl
et

io
n 

Ti
m

e

Success Rate
Completion Time

Fig. 5: The success rate and completion time of different
numbers of robots in the task of cylinder pushing.

3) Scalability Analysis: To evaluate the scalability of the
proposed method, we experiment with different numbers of
robots to push the cylinder described in Sec. IV-A.1. As
shown in Fig. 5, both the success rate and the completion
time improve significantly as the number of robots increases.
However, once the number of robots reaches four, the success
rate decreases compared to that with three robots. This
decline could be due to an increased risk of collisions, which
causes robots to maintain greater distances from each other,
which leads to less coordinated behaviors.

C. Real-World Setups

1) Environments and Task: We evaluate our policy on real
hardware in a 7.5 m × 7.5 m room, utilizing two Unitree
Go1 robots, each with an approximate payload of 5 kg.
The entire room is equipped with 24 Primex 22 cameras,
using OptiTrack’s motion capture system to gather real-
time data regarding robots and objects. We deploy both our
high-level and mid-level policies, trained in simulation, on
physical robots, utilizing the integrated locomotion policy of
the Unitree Go1 as the low-level controller for real-world
experiments. With domain randomization implemented for
the higher-level policy and the low-level policy trained with
Real-to-Sim considerations outlined in Section III-B, we
observe that this zero-shot transfer demonstrates robustness.



A B C D E
xy

z
xy

z

(a) Push-T

A B C D Ex
y

z
x
y

z

(b) Push-Cube

Fig. 6: The results of the physical-robot experiments where Robot 1 and Robot 2 collaboratively push an Object to its
Target Position, while avoiding Obstacles. The first row of each section demonstrates video snapshots corresponding to
the each task completion, with the local frames of Robot 1 and Robot 2 indicating their respective velocity command
references. The leftmost figure of each second row illustrates the motion trajectories of both robots and the Object. The
middle two figures of each second row depict the linear velocity commands received by Robot 1 and Robot 2, respectively.
The rightmost figure of each second row displays the angular velocity commands received by both robots. The three figures
on the right of each task are all processed with a sliding window of size 15.

We conduct two tasks for two robots: pushing a cube
and pushing a T-shaped block. The cube utilized in the
experiment measures 1.5m × 1.0m and weighs 6.8 kg. The
T-block consists of a main body measuring 0.5m × 1.0m,
with a protruding section measuring 0.5m × 0.5m, and has
an overall weight of 3.3 kg. Specifically, in the cube task,
the target position is randomly set on the opposite side of
the room, constrained within an x-range of 5.5 m to 6.5
m and a y-range of -3.5 m to 3.5 m. In the T-pushing
task, the target position is set within an x-range of 3.5 m
to 4.5 m and a y-range of -4 m to 4 m,. Even with a
limited size of the physical environment, this setup ensures
that our pushing process remain sufficiently long to meet
the requirements of long-horizon tasks. Additionally, in the
cube-pushing task, obstacles are randomly initialized within
a narrow 2 m band surrounding the line connecting the
starting and target positions of the box.

D. Real-World Results and Analysis

1) Pushing T: As shown in Figure 6(a), the robots ef-
fectively control the turning of the T-shaped block, and

successfully push the T-block to the target position. Due to
the smaller size of the T-shaped block, finding the appropriate
pushing point is crucial for the task. We observe that the two
robots consistently push from the two ends of the block to ap-
ply a larger contact surface, which ensures the application of
continuous forward force while also maintaining directional
control. Additionally, we find that the x direction velocity
commands output by the mid-level policy almost always
reach the upper bound of 0.5 m/s. This outcome is expected
because the robot is trained to finish the task within shorter
time. Once the robot identifies the correct pushing points,
its motion becomes predominantly forward, with turning
primarily achieved through adjustments in its yaw. Since the
target is located in the positive y direction, we observe that
the yaw command is initially positive and gradually returns to
zero or negative after the turn is completed to straighten the
robots. This process is complemented by minor adjustment
on y direction velocity commands, which help maintain good
contact positions for both robots when interacting with the
smaller T-shaped object.



2) Pushing Cube: The cube-pushing task exemplifies a
typical multi-robot collaboration challenge, primarily due to
the cube’s large size and weight. It involves long-distance
pushing with obstacles, testing the planning and coordination
capabilities of our hierarchical framework. As shown in
Figure 6(b), the robots navigate along an adaptive trajectory,
avoiding obstacles and reaching the target. The cube’s large
surface provides ample contact points, enabling the robots
to adopt varied pushing postures as needed. Throughout
the task, we observe the robots adopting different pushing
strategies: at times, both robots push forward with their
heads to maximize speed, while at other moments, one or
both shift to a sideways push to facilitate turning. The x-
direction velocity commands frequently reach the upper limit
of 0.5 m/s, similar to the push-T task, while y-direction and
yaw rate commands adapt accordingly to refine the pushing
strategies.

3) Analysis on the Action Homogeneity: Figure 6 reveals
similar motion patterns and a degree of homogeneity in the
xy commands. This behavior can be attributed to several
factors: (1) Robot 1 and Robot 2 are treated as homogeneous
agents and utilize a shared mid-level pushing policy network;
(2) both robots must maintain contact with the same surface
of the object for efficient pushing, resulting in similar states
and observations; and (3) the yaw rate commands primarily
handle strategic adjustments and motion coordination, allow-
ing the xy commands to remain relatively homogeneous.

V. CONCLUSIONS

In this paper, we address the challenge of obstacle-aware,
long-horizon object pushing by coordinating the whole-body
motions of multiple quadrupedal robots. While previous
studies make significant progress in improving quadrupedal
mobility and some aspects of manipulation, their ability to
handle large objects in complex, real-world environments
remains limited. To overcome these limitations, we propose
a hierarchical MARL framework, consisting of high-level,
mid-level, and low-level controllers, to enable effective and
coordinated pushing tasks.Through both simulation and real-
world experiments, we demonstrate that our approach sig-
nificantly outperforms the best baseline methods, achieving
a 36.0% higher success rate and a 24.5% reduction in
completion time. Our method effectively handles obstacle-
aware, long-horizon tasks such as Push-Cube and Push-T,
highlighting its potential for real-world applications.

ACKNOWLEDGMENT

We would like to express our gratitude to Mengdi Xu
for her initial idea brainstorming, early exploration, valuable
discussions on the project, and feedback on our manuscript.
We also thank Changyi Lin for his efforts in testing the low-
level controller in real-robot experiments. We are grateful
to Yuyou Zhang for her insightful discussions, constructive
feedback, and contributions to figure creation in our paper.

REFERENCES

[1] S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. H. Lee, and J. Hwangbo,
“Learning quadrupedal locomotion on deformable terrain,” Science
Robotics, vol. 8, no. 74, p. eade2256, 2023.

[2] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[3] R. Yang, G. Yang, and X. Wang, “Neural volumetric memory for
visual locomotion control,” in CVPR 2023, 2023.

[4] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[5] B. Lindqvist, S. Karlsson, A. Koval, I. Tevetzidis, J. Haluška,
C. Kanellakis, A.-a. Agha-mohammadi, and G. Nikolakopoulos, “Mul-
timodality robotic systems: Integrated combined legged-aerial mobility
for subterranean search-and-rescue,” Robotics and Autonomous Sys-
tems, 2022.

[6] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2024, pp. 11 443–11 450.

[7] C. D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten,
M. Bjelonic, and M. Hutter, “Alma-articulated locomotion and ma-
nipulation for a torque-controllable robot,” in 2019 International
conference on robotics and automation (ICRA). IEEE, 2019, pp.
8477–8483.

[8] M. Mittal, D. Hoeller, F. Farshidian, M. Hutter, and A. Garg,
“Articulated object interaction in unknown scenes with whole-body
mobile manipulation,” in 2022 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE, 2022, pp. 1647–1654.

[9] C. Lin, X. Liu, Y. Yang, Y. Niu, W. Yu, T. Zhang, J. Tan, B. Boots,
and D. Zhao, “Locoman: Advancing versatile quadrupedal dexterity
with lightweight loco-manipulators,” arXiv preprint arXiv:2403.18197,
2024.

[10] H. Ha, Y. Gao, Z. Fu, J. Tan, and S. Song, “Umi on legs: Making
manipulation policies mobile with manipulation-centric whole-body
controllers,” arXiv preprint arXiv:2407.10353, 2024.

[11] Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: learning
a unified policy for manipulation and locomotion,” in Conference on
Robot Learning. PMLR, 2023, pp. 138–149.

[12] M. Liu, Z. Chen, X. Cheng, Y. Ji, R. Yang, and X. Wang, “Visual
whole-body control for legged loco-manipulation,” arXiv preprint
arXiv:2402.16796, 2024.

[13] F. Shi, T. Homberger, J. Lee, T. Miki, M. Zhao, F. Farshidian,
K. Okada, M. Inaba, and M. Hutter, “Circus anymal: A quadruped
learning dexterous manipulation with its limbs,” in 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 2316–2323.

[14] Y. Ji, G. B. Margolis, and P. Agrawal, “Dribblebot: Dynamic legged
manipulation in the wild,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 5155–5162.

[15] J. Stolle, P. Arm, M. Mittal, and M. Hutter, “Perceptive pedipulation
with local obstacle avoidance,” arXiv preprint arXiv:2409.07195,
2024.

[16] X. Cheng, A. Kumar, and D. Pathak, “Legs as manipulator: Pushing
quadrupedal agility beyond locomotion,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
5106–5112.

[17] A. Rigo, Y. Chen, S. K. Gupta, and Q. Nguyen, “Contact optimization
for non-prehensile loco-manipulation via hierarchical model predic-
tive control,” in 2023 ieee international conference on robotics and
automation (icra). IEEE, 2023, pp. 9945–9951.

[18] M. Sombolestan and Q. Nguyen, “Hierarchical adaptive loco-
manipulation control for quadruped robots,” in 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2023,
pp. 12 156–12 162.

[19] M. P. Polverini, A. Laurenzi, E. M. Hoffman, F. Ruscelli, and N. G.
Tsagarakis, “Multi-contact heavy object pushing with a centaur-type
humanoid robot: Planning and control for a real demonstrator,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 859–866, 2020.

[20] W. J. Wolfslag, C. McGreavy, G. Xin, C. Tiseo, S. Vijayakumar,
and Z. Li, “Optimisation of body-ground contact for augmenting
the whole-body loco-manipulation of quadruped robots,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 3694–3701.



[21] S. Jeon, M. Jung, S. Choi, B. Kim, and J. Hwangbo, “Learning
whole-body manipulation for quadrupedal robot,” IEEE Robotics and
Automation Letters, vol. 9, no. 1, pp. 699–706, 2023.

[22] M. Sombolestan and Q. Nguyen, “Hierarchical adaptive control for
collaborative manipulation of a rigid object by quadrupedal robots,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2023, pp. 2752–2759.

[23] O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar, “Multi-
agent manipulation via locomotion using hierarchical sim2real,” arXiv
preprint arXiv:1908.05224, 2019.

[24] T. An, J. Lee, M. Bjelonic, F. De Vincenti, and M. Hutter, “Solv-
ing multi-entity robotic problems using permutation invariant neural
networks,” arXiv preprint arXiv:2402.18345, 2024.

[25] Z. Xiong, B. Chen, S. Huang, W.-W. Tu, Z. He, and Y. Gao,
“Mqe: Unleashing the power of interaction with multi-agent quadruped
environment,” arXiv preprint arXiv:2403.16015, 2024.

[26] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[27] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[28] H. Ferrolho, V. Ivan, W. Merkt, I. Havoutis, and S. Vijayakumar,
“Roloma: Robust loco-manipulation for quadruped robots with arms,”
Autonomous Robots, vol. 47, no. 8, pp. 1463–1481, 2023.

[29] M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba,
“Whole-body pushing manipulation with contact posture planning of
large and heavy object for humanoid robot,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 5682–5689.

[30] K. N. Kumar, I. Essa, and S. Ha, “Cascaded compositional residual
learning for complex interactive behaviors,” IEEE Robotics and Au-
tomation Letters, vol. 8, no. 8, pp. 4601–4608, 2023.

[31] T. Huang, N. Sontakke, K. N. Kumar, I. Essa, S. Nikolaidis, D. W.
Hong, and S. Ha, “Bayrntune: Adaptive bayesian domain randomiza-
tion via strategic fine-tuning,” arXiv preprint arXiv:2310.10606, 2023.

[32] M. Zhang, Y. Ma, T. Miki, and M. Hutter, “Learning to open
and traverse doors with a legged manipulator,” arXiv preprint
arXiv:2409.04882, 2024.

[33] C. Zhang, W. Xiao, T. He, and G. Shi, “Wococo: Learning whole-
body humanoid control with sequential contacts,” arXiv preprint
arXiv:2406.06005, 2024.

[34] P. Arm, M. Mittal, H. Kolvenbach, and M. Hutter, “Pedipulate:
Enabling manipulation skills using a quadruped robot’s leg,” in 41st
IEEE Conference on Robotics and Automation (ICRA 2024), 2024.

[35] J. Zhang, N. Gireesh, J. Wang, X. Fang, C. Xu, W. Chen, L. Dai, and
H. Wang, “Gamma: Graspability-aware mobile manipulation policy
learning based on online grasping pose fusion,” in 2024 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 1399–1405.

[36] P. Culbertson and M. Schwager, “Decentralized adaptive control for
collaborative manipulation,” in 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2018, pp. 278–285.

[37] P. Culbertson, J.-J. Slotine, and M. Schwager, “Decentralized adaptive
control for collaborative manipulation of rigid bodies,” IEEE Trans-
actions on Robotics, vol. 37, no. 6, pp. 1906–1920, 2021.

[38] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 307–321, 2015.

[39] Z. Tang, Y. Feng, and M. Guo, “Collaborative Planar Pushing of
Polytopic Objects with Multiple Robots in Complex Scenes,” in
Proceedings of Robotics: Science and Systems, Delft, Netherlands,
July 2024.

[40] L. Yan, T. Stouraitis, and S. Vijayakumar, “Decentralized ability-aware
adaptive control for multi-robot collaborative manipulation,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 2311–2318, 2021.

[41] O. Shorinwa and M. Schwager, “Distributed contact-implicit trajectory
optimization for collaborative manipulation,” in 2021 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE,
2021, pp. 56–65.

[42] M. J. Mataric, M. Nilsson, and K. T. Simsarin, “Cooperative multi-
robot box-pushing,” in Proceedings 1995 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Human Robot Interaction
and Cooperative Robots, vol. 3. IEEE, 1995, pp. 556–561.

[43] R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames, and K. A. Hamed,
“Distributed data-driven predictive control for multi-agent collabora-
tive legged locomotion,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 9924–9930.

[44] J. Kim and K. Akbari Hamed, “Cooperative locomotion via supervi-
sory predictive control and distributed nonlinear controllers,” Journal
of Dynamic Systems, Measurement, and Control, vol. 144, no. 3, p.
031005, 2022.

[45] J. Kim, R. T. Fawcett, V. R. Kamidi, A. D. Ames, and K. A. Hamed,
“Layered control for cooperative locomotion of two quadrupedal
robots: Centralized and distributed approaches,” IEEE Transactions
on Robotics, 2023.

[46] F. De Vincenti and S. Coros, “Centralized model predictive control
for collaborative loco-manipulation,” Proceedings of Robotics: Science
and System XIX, p. 050, 2023.

[47] G. Ding, J. J. Koh, K. Merckaert, B. Vanderborght, M. M. Nicotra,
C. Heckman, A. Roncone, and L. Chen, “Distributed reinforce-
ment learning for cooperative multi-robot object manipulation,” arXiv
preprint arXiv:2003.09540, 2020.

[48] M. Zhang, P. Jian, Y. Wu, H. Xu, and X. Wang, “Dair: Disentan-
gled attention intrinsic regularization for safe and efficient bimanual
manipulation,” arXiv preprint arXiv:2106.05907, 2021.

[49] Y. Li, C. Pan, H. Xu, X. Wang, and Y. Wu, “Efficient bimanual han-
dover and rearrangement via symmetry-aware actor-critic learning,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 3867–3874.

[50] Y. Lee, J. Yang, and J. J. Lim, “Learning to coordinate manipulation
skills via skill behavior diversification,” in International conference on
learning representations, 2019.

[51] B. Huang, Y. Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, and
X. Wang, “Dynamic handover: Throw and catch with bimanual hands,”
arXiv preprint arXiv:2309.05655, 2023.

[52] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer,
H. Dong, S.-C. Zhu, and Y. Yang, “Towards human-level bimanual
dexterous manipulation with reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 35, pp. 5150–5163, 2022.

[53] Y. Ji, B. Zhang, and K. Sreenath, “Reinforcement learning for col-
laborative quadrupedal manipulation of a payload over challenging
terrain,” in 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE). IEEE, 2021, pp. 899–904.

[54] Y. Zhang, Y. Niu, X. Liu, and D. Zhao, “Composer: Scalable and
robust modular policies for snake robots,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
10 800–10 806.

[55] B. Pandit, A. Gupta, M. S. Gadde, A. Johnson, A. K. Shrestha,
H. Duan, J. Dao, and A. Fern, “Learning decentralized multi-biped
control for payload transport,” arXiv preprint arXiv:2406.17279, 2024.

[56] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hi-
erarchical reinforcement learning,” Advances in neural information
processing systems, vol. 31, 2018.

[57] O. Nachum, S. Gu, H. Lee, and S. Levine, “Near-optimal representa-
tion learning for hierarchical reinforcement learning,” arXiv preprint
arXiv:1810.01257, 2018.

[58] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level
hierarchies with hindsight,” arXiv preprint arXiv:1712.00948, 2017.

[59] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical rein-
forcement learning,” in International conference on machine learning.
PMLR, 2017, pp. 3540–3549.

[60] S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting reinforcement learning
with behavior primitives for diverse manipulation tasks,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 7477–7484.

[61] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and
C. Schmid, “Learning to combine primitive skills: A step towards ver-
satile robotic manipulation §,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 4637–4643.

[62] H. Tang, J. Hao, T. Lv, Y. Chen, Z. Zhang, H. Jia, C. Ren, Y. Zheng,
Z. Meng, C. Fan et al., “Hierarchical deep multiagent reinforcement
learning with temporal abstraction,” arXiv preprint arXiv:1809.09332,
2018.

[63] S. Ahilan and P. Dayan, “Feudal multi-agent hierarchies for coopera-
tive reinforcement learning,” arXiv preprint arXiv:1901.08492, 2019.

[64] J. Ma and F. Wu, “Feudal multi-agent deep reinforcement learning
for traffic signal control,” in Proceedings of the 19th international



conference on autonomous agents and multiagent systems (AAMAS),
2020, pp. 816–824.

[65] B. Liu, Q. Liu, P. Stone, A. Garg, Y. Zhu, and A. Anandkumar,
“Coach-player multi-agent reinforcement learning for dynamic team
composition,” in International Conference on Machine Learning.
PMLR, 2021, pp. 6860–6870.

[66] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha,
J. Tan, and T. Zhang, “Visual-locomotion: Learning to walk on
complex terrains with vision,” in 5th Annual Conference on Robot
Learning, 2021.

[67] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control,” IEEE Transactions on Robotics, vol. 38, no. 5,
pp. 2908–2927, 2022.

[68] W. Tan, X. Fang, W. Zhang, R. Song, T. Chen, Y. Zheng, and
Y. Li, “A hierarchical framework for quadruped locomotion based on
reinforcement learning,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 8462–
8468.

[69] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” arXiv preprint
arXiv:2406.10454, 2024.

[70] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast and
efficient locomotion via learned gait transitions,” in Conference on
robot learning. PMLR, 2022, pp. 773–783.

[71] X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu,
B. Babich, and A. Garg, “Learning a contact-adaptive controller for
robust, efficient legged locomotion,” in Conference on robot learning.
PMLR, 2021, pp. 883–894.

[72] Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots,
“Cajun: Continuous adaptive jumping using a learned centroidal
controller,” in Conference on Robot Learning. PMLR, 2023, pp.
2791–2806.

[73] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” in Conference
on Robot Learning. PMLR, 2023, pp. 22–31.

[74] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and
Y. Wu, “The surprising effectiveness of ppo in cooperative multi-agent
games,” Advances in Neural Information Processing Systems, vol. 35,
pp. 24 611–24 624, 2022.

[75] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.



APPENDIX

A. Training Details

The training and setup of the low-level locomotion policy
in simulation follow the approach described in [73]. For
detailed implementation information, we direct readers to
this prior work.

The mid-level controller is to enable the robot team to
complete shorter-horizon pushing tasks, specifically those
where the distance between the initial position and the target
position of the object is less than 3.0 m. The environments
for the mid-level policies are designed to be free of obstacles,
with a dimension of 24 m × 24 m. The initial object positions
are static, while both the target object positions and the
initial agent positions are randomized within a circular area
measured by a polar coordinate system represented by r and
θ. Additionally, the yaw of both the initial objects and agents
is randomized from 0 to 2π. This ensures adequate coverage
of partial observation settings. In practice, we find that a sub-
stantially high threshold for subgoal reaching will improve
the success rate of long-horizon pushing. This prevents the
policy from becoming trapped into fine-grained manipulation
around an intermediate subgoal, which is intended to serve as
guidance toward the final target. An episode concludes either
when the agent team successfully completes the pushing
task or when an exception occurs, including robot fall-overs,
collisions, object tilting, or timeouts. The details of the above
environment settings are specialized in Table IV.

TABLE IV: Environment setups to train the mid-level con-
troller

Object Cuboid T-Shaped Cylinder

initial agent r range (m) [1.2, 1.3] [1.2, 1.3] [2.0, 2.5]
initial agent θ range (rad) [0, 2π] [0, 2π] [0, 2π]
initial target r range (m) [1.5,3.0] [1.5, 3.0] [1.5, 3.0]

initial target θ range (rad) [0, 2π] [0, 2π] [0, 2π]
timeout (s) 20 20 20

subgoal reaching threshold (m) 1.0 1.0 1.0

In the high-level controller, the RRT planner is utilized to
generate a reference path for guidance of the robots during
test time. Then, the adaptive policy will produce subgoals
for the mid-level controller based on the reference path,
environment dynamics, and agent states. Due to the overhead
of implementation of RRT planner for massively parallel
environments in IssacGym during adaptive policy training,
we randomly generate a long curved trajectory to replace
the RRT-planned reference path as the input of the adaptive
policy, with the start and end points consistent with the object
positions and targets of our task settings. Then, we generate
obstacles randomly around the trajectory. Specifically, the
obstacles are placed within a 4-meter-wide strip area centered
around the reference path. This ensures efficient obstacle
sampling to train the adjustment capability of the adaptive
policy.

B. Reward Details

The reward functions utilized to train the low-level loco-
motion policy is aligned with [73]. We direct readers to this
prior work for details.

The reward terms to train the mid-level adaptive policy
is shown in Table V. The task reward rmtask includes the
reward for the object to approach or reach the subgoal, where
dsubgoal,t represents the 2D distance between the object’s
current position and the subgoal’s position at step t, and
α = 200 is a coefficient for the delta distance. The penalty
term rmpenalty penalizes exceptions and robot close proximities,
where N is the agent number and di,j is the current distance
agent i and j. The heuristic reward rmheuristic is composed
of reward for approaching the object, object velocity, and
the OCB reward, where dobject,i denotes the current distance
between the object and agent i and vobject is the velocity of
the object.

TABLE V: Reward terms to train the mid-level controller

Reward Expression Weight

Subgoal Reaching 1(reach subgoal) 10
Subgoal Approaching α(dsubgoal,t−1 − dsubgoal,t)− dsubgoal,t 3.25e−3
Exception Avoidance 1(exception) −5

Collision Avoidance
∑N

j ̸=i
1

0.02+di,j/3
−2.5e−3

Object Approaching −(dobject,i + 0.5)2 7.5e−4
Object Velocity 1(vobject > 0.1) 1.5e−3

OCB v⃗i · v⃗target 4e−3

The reward terms to train the high-level adaptive policy is
shown in Table VI. The high-level task reward rhtask consists
of three components: a reward for the object moving toward
the final target, a reward for the object reaching the final
target, and a reward for the subgoal following the planned
trajectory. Here, dtarget represents the Euclidean distance
between the object’s current position and the target position,
while dhsubgoal, path is the distance between the output subgoal
and the nearest sampled point on the reference path. The
penalty term rhpenalty account for exceptions and penalize
situations where the object is in close proximity to obstacles.
Here, dobstacle is the distance between the object and its
nearest obstacle.

TABLE VI: Reward terms to train the high-level controller

Reward Expression Weight

Target Reaching 1(reach final target) 2
Target Approaching 1

1+dtarget
0.3

Path Following 1
1+dsubgoal, path

0.5
Exception Avoidance 1(exception) -0.5
Obstacle Avoidance 1

1+dobstacle
-0.1

C. Hyperparameters

The hyperparameters of the low-level locomotion policy,
the mid-level decentralized pushing policy, and the high-level
adaptive policy are detailed in Table VII, Table VIII, and
Table IX, respectively.



TABLE VII: Hyperparameters of PPO for the low-level controller training.

Hyperparameter Value

number of environments 4096
leaning rate 1e-3

discount factor 0.99
gae lambda 0.95
batch size 4096 × 24

number of epochs 5
number of minibatches per epoch 4

value loss coefficient 1.0
clip range 0.2

entropy coefficient 0.01
optimizer Adam

TABLE VIII: Hyperparameters of MAPPO for the mid-level decentralized policy training. N is the number of agents.

Hyperparameter Value

number of environments 500
leaning rate 5e-4

discount factor 0.99
gae lambda 0.95

number of epochs 10
batch size 500× 200×N

value loss coefficient 0.5
clip range 0.2

entropy coefficient 0.01
optimizer Adam

TABLE IX: Hyperparameters of PPO for the high-level adaptive policy training.

Hyperparameter Value

number of environments 500
leaning rate 5e-4

discount factor 0.99
gae lambda 0.95

number of epochs 10
batch size 500 × 200

value loss coefficient 0.5
clip range 0.2

entropy coefficient 0.01
optimizer Adam


	Introduction
	Related Work
	Loco-Manipulation for Legged Robots
	Multi-Agent Collaborative Manipulation
	Hierarchical Reinforcement Learning

	Methodology
	Hierarchical Reinforcement Learning for Long-Horizon Multi-Robot Pushing
	Low-Level Controller
	Mid-Level Controller
	High-Level Controller
	Reward Design
	Mid-Level Reward
	High-Level Reward


	Experiments
	Simulation Setups
	Environments and Tasks
	Baselines

	Simulation Results and Analysis
	Comparisons with Baselines
	Ablation Study
	Scalability Analysis

	Real-World Setups
	Environments and Task

	Real-World Results and Analysis
	Pushing T
	Pushing Cube
	Analysis on the Action Homogeneity


	Conclusions
	References
	Training Details
	Reward Details
	Hyperparameters


